

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented here

The format is a modified version based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html]

0.3.0

2020-08-25

	[Added] Added stock list to display the 3 shelves. #40 [https://github.com/tensorwerk/stockroom/pull/40] @jjmachan [https://github.com/jjmachan]

	[Added] VOC segmentation dataset from torchvision. #39 [https://github.com/tensorwerk/stockroom/pull/39] @jjmachan [https://github.com/jjmachan]

	[Added] Read only stock objects can right inside enable_write context manager. #37 [https://github.com/tensorwerk/stockroom/pull/37] @hhsecond [https://github.com/hhecond]

	[Breaking change] stock.run() is removed. All the write enabled accessors optimized on creation #37 [https://github.com/tensorwerk/stockroom/pull/37] @hhsecond [https://github.com/hhecond]

	[Breaking change] .keys() returns relevant keys. This change breaks the model storage APIs #35 [https://github.com/tensorwerk/stockroom/pull/35] @hhsecond [https://github.com/hhecond]

	[Added] Rich [https://rich.readthedocs.io/en/latest/] powered console messages #32 [https://github.com/tensorwerk/stockroom/pull/32] @jjmachan [https://github.com/jjmachan]

	[Fixed] Structural change and shape error fix in import utility #27 [https://github.com/tensorwerk/stockroom/pull/27] @jjmachan [https://github.com/jjmachan]

0.2.2

2020-08-06

	[Fixed] Import error on make_torch_dataset with hangar’s old version #26 [https://github.com/tensorwerk/stockroom/pull/26] @hhsecond [https://github.com/hhecond]

0.2.1

2020-08-06

	[Added] The import CLI for importing PyTorch datasets (torchvision, torchtext and torchaudio) #17 [https://github.com/tensorwerk/stockroom/pull/17] @jjmachan [https://github.com/jjmachan]

	[Changed] Hangar’s new column API #12 [https://github.com/tensorwerk/stockroom/pull/12] @hhsecond [https://github.com/hhecond]

	[Changed] Global read optimization #11 [https://github.com/tensorwerk/stockroom/pull/11] @hhsecond [https://github.com/hhecond]

	[Changed] Singleton for holding the checkout object has been removed #3 [https://github.com/tensorwerk/stockroom/pull/3] @hhsecond [https://github.com/hhecond]

0.1.0

2019-12-12

	First release on PyPI

CLI Reference

This page provides documentation for our command line tools.

::: mkdocs-click
:module: stockroom.cli
:command: stock

 If you wish to contribute to stockroom (yaay!!🎉🎉) decide whether it needs to be discussed with the dev team
before you start spending time on it. If you are in doubt, ask us in slack [https://join.slack.com/t/hangarusergroup/shared_invite/zt-886tggtd-_rs1RIb5ACz5g~AzyhphPg]
or raise a Github issue [https://github.com/tensorwerk/stockroom/issues/new/choose] (🙄)

	You’d need to fork the stockroom repository (look for the “Fork” button on top right) and then clone the fork locally.

git clone git@github.com:your_name_here/stockroom.git

	Create a branch locally and make your changes. Feel free to reach us if you need a code review before you finish your work

git checkout -b your-branch-name

Contributing to the code

Once done with the changes, run the test suite. It will run existing test cases, check coverage, run black and mypy.
Also, make sure you have updated the documentation, added required test cases and modified the changelog.md file
in docs directory before creating the PR

$ bash ./scripts/test.sh
---> 100%

Contributing to the documentation

We are using the amazing mkdocs [https://www.mkdocs.org/] library for documentation. You can spin up the mkdocs live debugging server
from the root of the repository and see the changes you are making in realtime.

$ mkdocs serve
---> 100%

 Stockroom is still in its early stages and we are grateful to you for being part of the stockroom-hangar community.
If you love stockroom and if you wish to help us, there are few ways you can contribute. Contributing in the design
discussions, writing code and sending PR are extremely impactful at this early times but there are other simpler
ways as well.

Give us a star at Github

⭐️️ in Github let people know that stockroom is useful for others already and it will give us confidence that we
are heading in the right direction. You can find our Github page here [https://github.com/tensorwerk/stockroom]

Be part of the slack community

We have a #stockroom channel in HangarUserGroup [https://join.slack.com/t/hangarusergroup/shared_invite/zt-886tggtd-_rs1RIb5ACz5g~AzyhphPg]
slack. Feel free to chime in, ask questions if you have. It would also helpful if you can hang around and help the community there.

Take part in our weekly design calls

We run weekly design calls for around Hangar and Stockroom, mostly on Tuesdays. Hop in if you could spare 30 minutes. We’ll announce the
topic and time every week through our twitter [https://twitter.com/tensorwerk]. Recordings of our past sessions are available
here [https://www.youtube.com/channel/UCgPQ0bnPQRo5boHyH1knCdA]

Feedback

Give us your feedback!! If you love stockroom, let us know what in stockroom you are fond of particularly. If you hate it, we’d
like to know how can we make it better. Slack [https://join.slack.com/t/hangarusergroup/shared_invite/zt-886tggtd-_rs1RIb5ACz5g~AzyhphPg]
is the best platform to reach us for feedback at this point in time but feel free to talk to us through twitter [https://twitter.com/tensorwerk]
or even over email. If you find a bug or you have a specific question you’d want one of the core devs to answer,
choose the proper label while you create an issue [https://github.com/tensorwerk/stockroom/issues/new/choose]

Feature request

If you have a feature in mind that you think would fit in stockroom well, choose “Feature Request” in the
Github issue page [https://github.com/tensorwerk/stockroom/issues/new/choose] and create an issue

Pull request

Contributing to the repository is invaluable for us and the community right now. If you’d like to build a new feature or fix an existing bug,
please do raise an issue first. It might be the case that the feature you are trying to build is already built and under testing, or it might
contradict the design ideas we have kept intact. Discussing it first would save our time. If you find a
typo in the documentation or if you’d like to do small fixes or clean up, feel free to raise a PR without raising an issue.

Tweet about us

Let the world know how you have used stockroom. Use the hashtag #stockroom or tag our handle @tensorwerk. We are listening.

🏃‍♀️ Quick Start

Eager to take a quick run through stockroom? This page gives a good and crisp introduction to stockroom.

	Import a cifar10 dataset from torchvision to stockroom

	Train a CNN with this data

	Save the hyper parameters and model to stockroom for reproducibility

You need to install stockroom, pytorch, torchvision and matplotlib for this tutorial

!!! tip “Use conda”
installing pytorch and torchvision using pypi might install the manylinux bundle which is huge
in size. Use conda if you can

Introduction

Stockroom exposes the environment as three shelves. Data, Model and Experiments. This segregation let
stockroom to be prejudice about what goes inside and optimize the storage. Stockroom also introduces
stock CLI which gives you the ability to interact with your stockroom repository in a git-like way.
Checkout the reference doc for complete CLI reference. You’ll be using both the CLI and
Python APIs of stockroom in this tutorial.

Initialize Stock Repository

CD to your project directory and initialize it as a stock repository

$ stock init --username myname --email a@b.c
---> 100%

Import CIFAR10

StockRoom keeps all your data in .data shelf arranged as columns. In our case, data is imported as four columns.

	Train images

	Train labels

	Test images

	Test labels

!!! info “Data is Tensor”
Stockroom makes strong assumptions about your data. Any data point that goes into stockroom must be
a tensor a.k.a numpy.ndarray object. It is why stockroom could optimize the data storage
and versioning efficiently. Also, know that, this philosophy is originally from Hangar and we use
Hangar internally for all type of storages

$ stock import torchvision.cifar10
Downloading cifar-10-python.tar.gz
---> 100%
Adding cifar10 dataset to StockRoom
---> 100%
Done!

Once you have the CIFAR data downloaded and added to your stock repository, you can create your project files and start
building the network. We are using the CIFAR10 example [https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html]
from pytorch’s blitz tutorial here, with few modification to load the data from stockroom instead of torchvision.

!!! tip “Stockroom is better off with git”
Stockroom is designed to be able work without git but git will enable you to track your source code along with machine
learning artifacts and data

Build The Model

We’ll build a simple CNN model as given in the pytorch tutorial

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)
 self.pool = nn.MaxPool2d(2, 2)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1, 16 * 5 * 5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

Exploring data

Stockroom gives you simple, dictionary-like APIs for accessing and storing things. You’d create a stock
object that gives you the access to the storage

from stockroom import StockRoom
import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
 plt.imshow(np.transpose(img, (1, 2, 0)))
 plt.show()

stock = StockRoom()
index = 100
img = stock.data['cifar10-train-image'][index]
imshow(img)

!!! info “Read Access”
Making stock object as given above will only give you a read enabled object. For saving data, you’d need
to open the enable_write context manager or create the stock object by enabling write mode.
python stock = StockRoom() with stock.enable_write(): write_into(stock) # or stock = StockRoom(enable_write=True) write_into(stock)
You’ll see an example below

Accessing data

As you already know, data is stored as columns inside the .data shelf in stockroom. You can get fetch the column
from the .data attribute and then fetch the data at a particular index - here we take the 100th data point.

from stockroom import StockRoom
import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
 plt.imshow(np.transpose(img, (1, 2, 0)))
 plt.show()

stock = StockRoom()
index = 100
img = stock.data['cifar10-train-image'][index]
imshow(img)

!!! tip “Column Names”
You need to know the column names to interact with the data in the .data shelf.
These names will be printed to the terminal when you import data. But if you
missed/forget them, use
python stock.data.keys()

DataLoader

Making a PyTorch DataLoader for your data is possible with the make_torch_dataset function. It
takes columns as first argument in a python list/tuple and gives you the element from each column
on a particular index

!!! info
make_torch_dataset is a Hangar function and stockroom only exposing it for convenience

Make Dataset

from stockroom import make_torch_dataset
from torch.utils.data import DataLoader

imgcol = stock.data['cifar10-train-image']
lblcol = stock.data['cifar10-train-label']
dset = make_torch_dataset([imgcol, lblcol])
dloader = DataLoader(dset, batch_size=64)

Make DataLoader

The dataset returned from make_torch_dataset is a subclass of torch.utils.data.Dataset and
hence is understood by torch DataLoader. You could create the dataloader as you create with
any dataset. Huge batch size, custom collate function, multiple threads - doesn’t matter. Use
it as you wish. Remember, you have made a read only stock object, you’d never corrupt your
data with that.

from stockroom import make_torch_dataset
from torch.utils.data import DataLoader

imgcol = stock.data['cifar10-train-image']
lblcol = stock.data['cifar10-train-label']
dset = make_torch_dataset([imgcol, lblcol])
dloader = DataLoader(dset, batch_size=64)

Training

We’ll open a write enabled stock object here since we need to store experiment information (hyper parameters,
metrics, output, artifacts etc) and model to stockroom.

!!! warning “Careful with the write access”
With more power comes more responsibility. Remember, you can write to your repository

!!! success “Your data is safe”
With the power of hangar, any data that is committed to stockroom is safe there. Even if you overwrite
that data in a new commit, you can always time travel to previous commit and access your old data

Store hyper-parameters

As .data shelf store your data, hyper-parameters and experiment artifacts must be stored in the
.experiment shelf. While the .data shelf only allow you to store tensor data, .experiment shelf
will eventually allow you to store any artificats, like a loss graph, or a pickled file you’d need
for training your model etc.

for epoch in range(2):
 p = tqdm(dloader)
 for i, (inputs, labels) in enumerate(p):
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()
 if i % check_every == check_every - 1:
 current_loss = running_loss / check_every
 running_loss = 0.0
 if current_loss < best_loss:
 with stock.enable_write(commit_msg=f"{best_loss=}"):
 stock.experiment['lr'] = lr
 stock.experiment['momentum'] = momentum
 stock.model['cifarmodel'] = net.state_dict()
 best_loss = current_loss

Store model

The .model shelf takes state_dict from a pytorch model and nothing else. You will eventually be able to store
a jited model into your .experiment store but .model shelf is designed to store your model weights passed
as a dictionary.

for epoch in range(2):
 p = tqdm(dloader)
 for i, (inputs, labels) in enumerate(p):
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()
 if i % check_every == check_every - 1:
 current_loss = running_loss / check_every
 running_loss = 0.0
 if current_loss < best_loss:
 with stock.enable_write(commit_msg=f"{best_loss=}"):
 stock.experiment['lr'] = lr
 stock.experiment['momentum'] = momentum
 stock.model['cifarmodel'] = net.state_dict()
 best_loss = current_loss

!!! tip “Storing weights is better”
As far as you version your source code, saving the weights is always better. We are building more utilities,
especially visualization tools, to interact with the data in stockroom. This will eventually help you to analyze
the model weights, visualize them and even diff it 🤯😍

Commit your changes

Commit your changes as you move forward, you can always time travel back and look at. With the context
managers, autocommit is enabled by default. You can control this behaviour by changing the argument
value
.data or .experiment or .model shelves

for epoch in range(2):
 p = tqdm(dloader)
 for i, (inputs, labels) in enumerate(p):
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()
 if i % check_every == check_every - 1:
 current_loss = running_loss / check_every
 running_loss = 0.0
 if current_loss < best_loss:
 with stock.enable_write(commit_msg=f"{best_loss=}"):
 stock.experiment['lr'] = lr
 stock.experiment['momentum'] = momentum
 stock.model['cifarmodel'] = net.state_dict()
 best_loss = current_loss

!!! info “stock commit != git commit”
Stock commit is not same as a git commit. In fact, you can combine multiple stock commit in one
git commit and consider that as an experiment

Recap

	Initialize stock repository

	Import torchvision dataset to the repository

	Build the network

	Train your network

	Add data, augment it, experiment with hyper parameters but commit to stockroom along with you commit your source code

In case you need, the source code for the above experiment is available at the github repository
hhsecond/stockroom-cifar10 [https://github.com/hhsecond/stockroom-cifar10]

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

